

Разработка стандартов качества воздуха

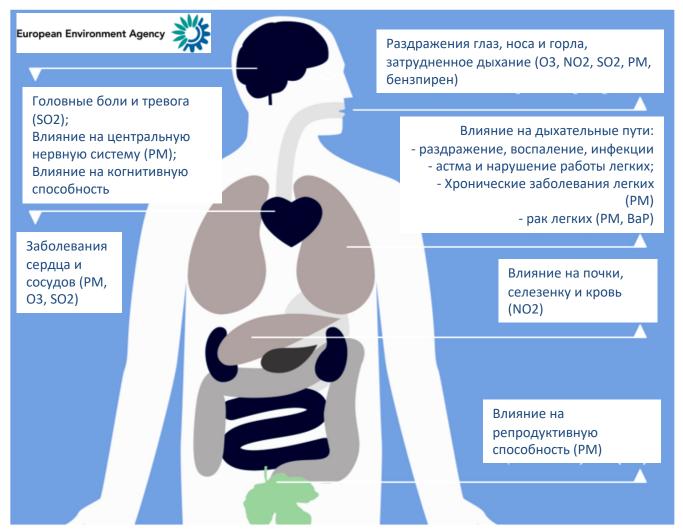
Научно обоснованные рекомендованные пороговые значения

Оценка технической достижимости Оценка экономической целесообразности

Научно обоснованные ориентировочные значения - ВОЗ

- Всего ВОЗ дает рекоммендации относительно 32 загрязняющих веществ (документ 2000 г.)
- В недавнем отчете ВОЗ разделил вещества на 4 группы по их важности/опасности/необходимости контролировать и пересматривать стандарты (Глобальные рекомендации ВОЗ по качеству воздуха, 2021 г.)

Научно обоснованные ориентировочные значения - ВОЗ


1-ая группа	йшие данные подтверждо 2-ая группа	3-я группа	4-ая группа Ртуть	
Взвешенные	Кадмий	Мышьяк		
частицы (пыль)	Хром	Магний	Асбест	
Озон	Свинец	Платина	Формальдегид	
Диоксид озота	Бензол	Ванадий	Стирол	
Диоксид серы	Диоксины	Бутадиен	Тетрахлорэтилен	
Оксид углерода	Полиароматические углеводороды (ПАУ)	Трихлорэтилен	Сероуглерод	
		Акрилонитрил	Фториды	
		Сероводород	Полихлорированны е дифенилы (ПХД)	
		Винилхлорид	1,2-дихлорэтан	
		Толуол	Дихлорметан	
		Никель		

Влияние загрязнения воздуха на здоровье человека

Критические нагрузки и уровни

- Критические нагрузки/уровни **атмосферное осаждение/концентрация** атмосферных загрязнителей, ниже которых, согласно нынешним научным знаниям, неблагоприятное воздействие на такие рецепторы, как человек, растения, экосистемы или материалы, не возникает
- В соответствии с Конвенцией о ТЗВБР ЕЭК ООН в 1988 году была учреждена Международная совместная программа по разработке моделей и составлению карт критических уровней и нагрузок и воздействия, рисков и тенденций загрязнения воздуха (МСП по разработке моделей и составлению карт)
- Цели:
 - определение конкретных критических нагрузок рецепторов для косвенного воздействия (долгосрочного) осаждения различных загрязнителей воздуха и критических уровней для непосредственного воздействия газообразных загрязнителей воздуха;
 - картирование осаждений и концентраций загрязнителей, превышающих критические пороговые значения;
 - разработка надлежащих методов в качестве основы для оценки потенциального ущерба, т.е. с помощью динамического моделирования.

Стандарты качества воздуха - ЕС

- Контроль за **ограниченным количеством веществ** (в соответствии с рекомендациями ВОЗ и ЕЭК ООН)
- Стандарты качества стремятся к рекомендациям ВОЗ и ЕЭК ООН
- Атмосферный воздух воздух вне помещений, за исключением рабочей среды
- Используются краткосрочные и долгосрочные значения концентраций (принимая во внимание особенности веществ и их влияния на здоровье человека)
- **Не используются одноразовые максимальные концентрации** (20-30 мин)
- Предельные значения качества воздуха:
 - 1. охрана здоровья человека
 - 2. предельные значения (критические уровни) для охраны вегетации и экосистем
- Целевые значения

This project is implemented by the consortium led by Stantec, with ELLE (Estonian, Latvian &

Lithuanian Environment), ACTED, and Kommunal kredit Public Consulting as the consortium partners

План действий по нулевому загрязнению

Основные цели:

- сократить число случаев преждевременной смерти в результате воздействия тонкодисперсных частиц на 55% к 2030 году по сравнению с 2005 годом;
- сокращение к 2030 году на 25% доли экосистем, затронутых загрязнением воздуха, по сравнению с 2005 годом;
- сокращение к 2050 году загрязнения воздуха до уровней, которые уже не считаются вредными для здоровья.

Стандарты кач	ества воздуха	ЕС и возможн	ные вариа	анты их и	зменения
	Действующие стандарты ЕС	Действующие рекомендации ВОЗ	Вариант политики I-1 (2030)	Вариант политики I-2 (2030)	Вариант политики I-3 (2030)
РМ2,5 (годовой) [мкг/м3]	25 / 20	5	5	10	15
РМ2,5 (дневнои) [мкг/м3]	-	(99%) 15	(99%) 15	(95%) 25	(95%) 37.5
РМ10 (годовой) [мкг/м3]	40	15	15	20	30
РМ10 (дневной) [мкг/м3]	(35 дней) 50	(99%) 45	(99%) 45	(95%) 45	(90%) 50
NO2 (годовой) [мкг/м3]	40	10	10	20	30
NO2 (дневной) [мкг/м3]	-	(99%) 25	(99%) 25	(95%) 50	(90%) 50

60

(99%) 100

(99%) 40

(99%) 4

10

1.7

0.12

0.5

6.6

5.0

25

Примечание. Для определения дневных стандартов качества воздуха в скобках делается ссылка на допустимые превышения, выраженные в количестве дней или процентилях. Для полного года измерений 99% переводятся в стандарт, который не должен превышаться более чем за 3 дня, 95% - не более чем за 18 дней и 90% - не более чем за 36 дней. Для почасовых стандартов качества воздуха 99,9% означает, что стандарт не должен превышаться более чем на 8 часов, а 99,98% не должен превышаться более чем на 1 час.

(18 часов) 200

(25 дней) 120

(3 дня) 125

(24 yaca) 350

20

10

5

1

0.5

6

5

20

NO2 (часовой) [мкг/м3]

ОЗ (пиковый) [мкг/м3]

SO2 (годовой) [мкг/м3]

SO2 (дневной) [мкг/м3]

SO2 (часовой) [мкг/м3]

СО (за 8 часов) [мг/м3]

Бензол (годовой) [мкг/м3]

Свинец (годовой) [мкг/м3]

Мышьяк (годовой) [нг/м3]

Кадмий (годовой) [нг/м3]

Никель (годовой) [нг/м3]

СО (дневной) [мг/м3]

ВаР (годовой) [нг/м3]

[MKF/M3]

ОЗ (в среднем за 8 часов)

(99.98%) 200

60

20

10

1.7

0.12

0.5

6.0

5.0

20

(99%) 100

(99%) 40

(99%)4

(99.98%) 350

(99.98%) 200

(99.98%) 200 **70**

(95%) 120

(95%) 50

(95%) 4

(99.98%) 350

20

10

3.4

1.0

0.5

6.0

5.0

20

(99.98%) 200 100

20

10

5

1.0

0.5

6.0

5.0

20

(95%) 120

(95%) 50

(95%) 7

(99.98%) 350

Виды воздействия и показатели, используемые для оценки воздействия (I)

Концентрации загрязняющих веществ в воздухе Уровни концентрации загрязняющих веществ в воздухе

- Фоновые концентрации,
- В «горячих точках» (включая как транспортные, так и отраслевые), а также
- Их изменения во времени

Воздействие на окружающую среду

- Воздействие загрязнения воздуха на здоровье
- Воздействие загрязнения воздуха на экосистемы

Экономически е последствия

- Затраты общества вследствие загрязнения воздуха,
- Меры, необходимые для соответствия стандартам качества воздуха ЕС, и связанные с ними затраты
- Положительное и отрицательное влияние на международную конкурентоспособность ЕС

Виды воздействия и показатели(II)

Воздействие на общество

- Воздействие загрязнения воздуха на чувствительные группы населения
- Социальные последствия загрязнения воздуха и социальные последствия мер по борьбе с загрязнением воздуха
- Влияние на занятость

Синергия

Взаимодействие с другими целями Плана действий ЕС по достижению нулевого загрязнения воздуха, воды и почвы. Сюда входит: снижение преждевременной смертности и воздействие на экосистему, синергия с качеством воздуха внутри помещений, со снижением шумового загрязнения, возможна взаимосвязь с действиями по борьбе с изменением климата.

Административная нагрузка Управление качеством воздуха, в частности, в отношении режимов оценки качества воздуха (включая мониторинг, моделирование и отчетность по соответствующим данным)

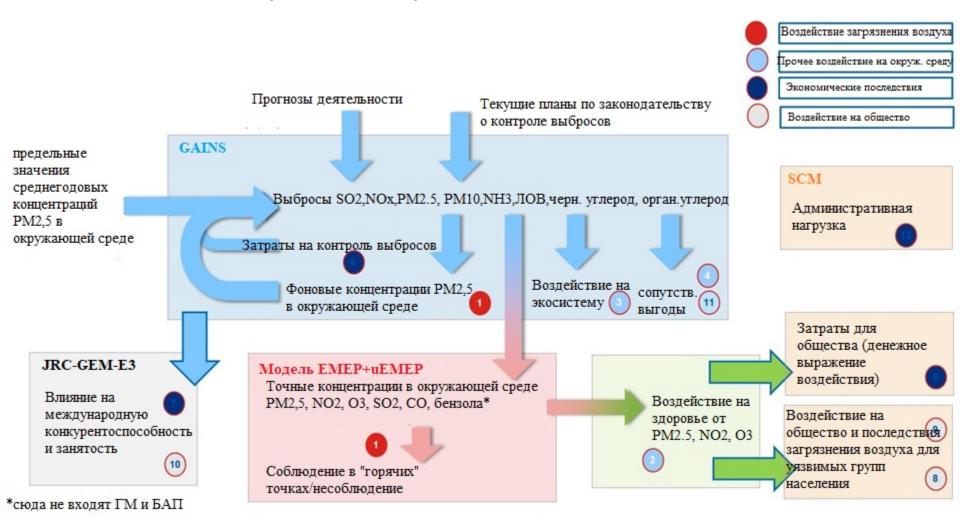
Количественный подход к оценке

Выбросы

Концентрации

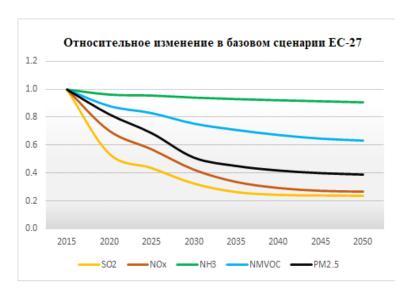
Оценка воздействия на здоровье

Монетизация воздействия на здоровье и на другие области


Количественное моделирование

- Моделирование используется для оценки ряда воздействий, в частности: выбросов загрязняющих веществ в атмосферу, концентрации, воздействия на здоровье и экосистемы, возможности достижения конкретных целевых показателей качества воздуха, а также соответствующих мер и связанных с ними затрат.
- Основные модели:
 - Модель взаимодействия и синергии между парниковыми газами и загрязнением воздуха (GAINS)
 - Модель переноса химических веществ, разработанная MET Norway (EMEP CTM) с расширением uEMEP для более точного разрешения,
 - Модель JRC-GEM-E3.

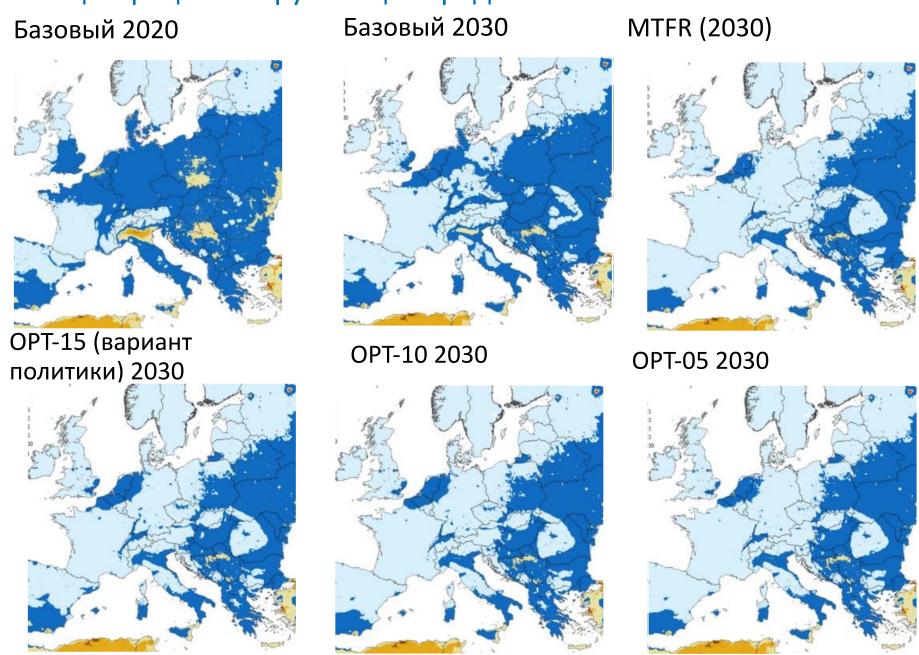
Схема моделирования, применяемая для оценки показателей



Базовый сценарий

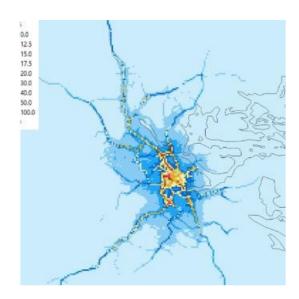
Ключевые факторы изменения выбросов к 2030 году различны для каждого загрязняющего вещества:

- для PM2,5 большая часть снижения связана с сокращением использования угля и биомассы в жилом секторе и переходом на более чистые технологии;
- для NOx новое законодательство и тенденции в области топлива (меньше дизельного топлива и увеличение числа гибридных и полностью электрических транспортных средств);

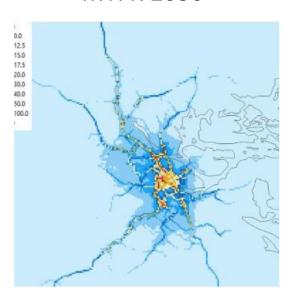

- для SO2 сильное сокращение использования угля на электростанциях, а затем сокращение использования угля в жилых домах;
- Для НМЛОС (NMVOC) сокращение сектора отопления жилых помещений (см. PM2,5) и транспорта (см. NOx);
- для NH3 (ограниченное) снижение в основном обусловлено структурными изменениями (поголовье скота), включая сокращение применения минеральных азотных удобрений.

Lithuanian Environment), ACTED, and Kommunal kredit Public Consulting as the consortium partners

Концентрации в окружающей среде

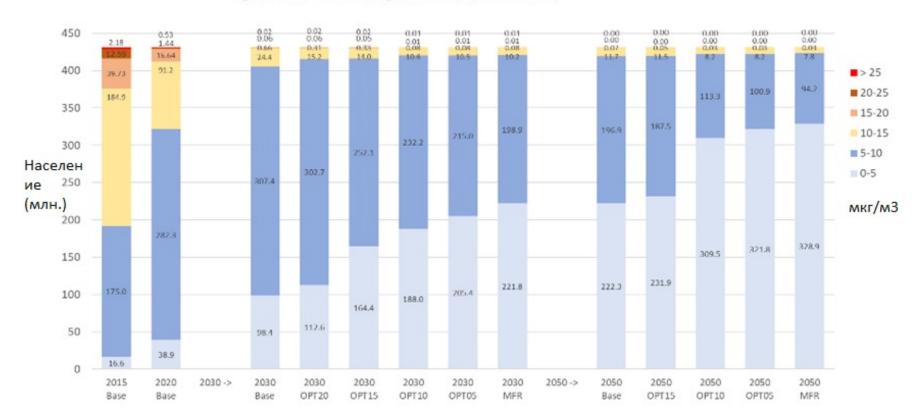

ГОРЯЧИЕ ТОЧКИ

Пример: Регион в Скандинавии (Стокгольм)


Базовый 2020

Базовый 2030

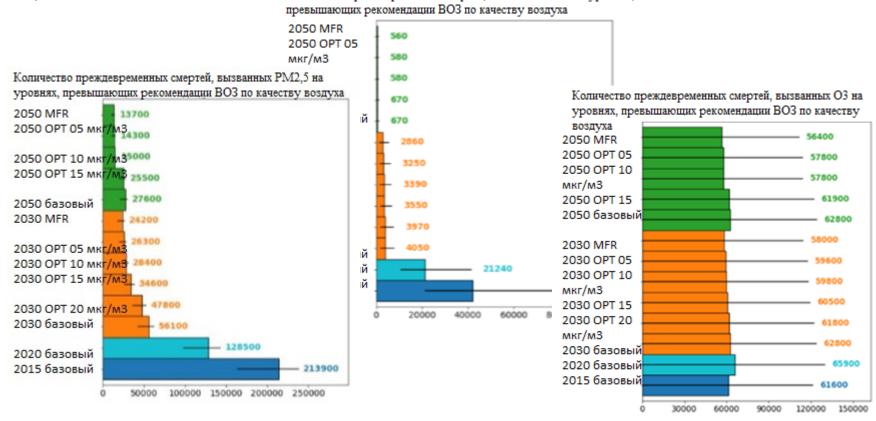
MTFR 2030



Воздействие на население

Количество людей, подвергшихся воздействию выше выбранных среднегодовых концентраций в 27 странах ЕС для РМ2,5

uEMEP/EMEP:Распределение воздействия на население среднегодовых концентраций РМ2,5 (431 миллион)



Воздействие на здоровье

Количество ежегодных преждевременных смертей в 27 странах ЕС, вызванных воздействием загрязнения воздуха на уровнях, превышающих рекомендуемые ВОЗ показатели качества воздуха, для всех сценариев для трех загрязнителей (РМ2,5, NO2,

Количество преждевременных смертей, вызванных NO2 на уровнях,

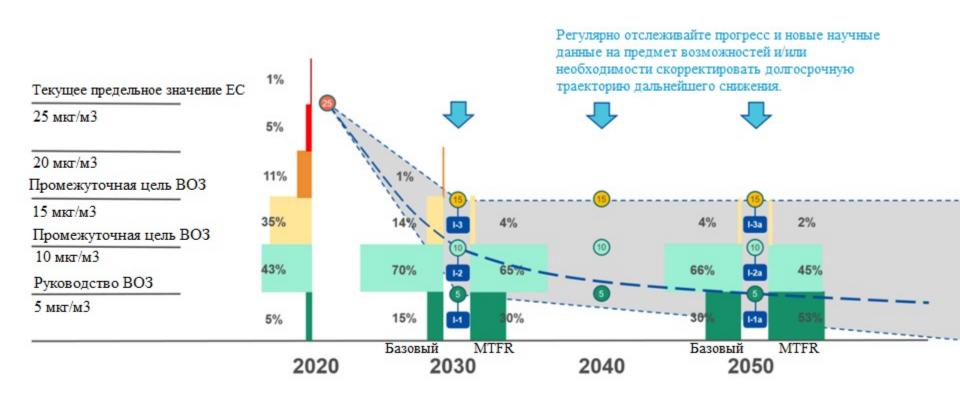
O3)

Прямые выгоды от вариантов политики по сравнению с базовым уровнем — в год в миллионах евро (2015)

		2030			
Вариант полити сценарий	ки /	(РМ2,5 на уровне 20 мкг/м3)	I-3 (PM2,5 на уровне 15 мкг/м3)	I-2 (PM2,5 на уровне 10 мкг/м3)	I-1 (PM2,5 на уровне 5 мкг/м3)
Выгоды для здоровья человека	Смертность (VSL96)	33 486	85 697	110 517	118 764
	Заболе- ваемость	2 343	6 141	7 992	8 610
Экологические выгоды	Мате- риальные	29	181	196	204
	С/х культуры	67	188	254	276
	Леса	69	222	287	316
	Экосис- темы	302	1 345	2 117	2 588
Общая валовая	выгода	36 296	93 774	121 363	130 758

Затраты и чистая выгода от вариантов политики по сравнению с базовым уровнем — в год в миллионах евро (2015 г.)

Вариант политики / сценарий	(РМ2,5 на уровне 20 мкг/м3)	I-3 (PM2,5 на уровне 15 мкг/м3	I-2 (PM2,5 на уровне 10 мкг/м3	I-1 (PM2,5 на уровне 5 мкг/м3
Общая валовая выгода	36 296	93 774	121 363	130 758
Общие затраты на смягчение последствий / предотвращение	-560	-3 280	-5 580	-7 020
Общие административные расходы (*)	-75	-76	-79	-106
Итого чистая выгода	35 661	90 418	115 704	123 632



Результаты оценки

Вариант политики	Последствия / воздействия				Оценка и ключевые вопросы	соотноше- ние выгод к затратам
	Окр.ср еда	Общес тво.	Эк-ка.	Затр аты		
Вариант политики I-1 Полное соответствие рекомендациям ВОЗ	+++	+++	+++		Даже если будут приложены все усилия, соответствующие цели не могут быть полностью достигнуты повсеместно (из-за физических ограничений географии). Но в местах, где они достигаются, они приносят большую пользу для здоровья.	Высокое но неточное 6:1
Вариант политики I-2 Более точное соответствие рекомендациям ВОЗ	++	++	++		Текущая базовая политика приближает большинство регионов к целевому показателю. Достижение этой цели имеет значительные преимущества для здоровья и сопутствующие социальные выгоды — требуются средние усилия.	Высокое 7.5:1
Вариант политики I-3 Частичное соответствие рекомендациям ВОЗ	+	+	+	-	Текущая базовая политика позволит достичь этого уровня почти во всех странах ЕС. Таким образом, установление целей на этом уровне дает лишь ограниченную дополнительную выгоду (но там, где это приводит к дополнительным действиям, это приносит большую пользу).	Высокое 10:1

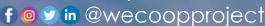
Концентрации в окружающей среде (II)

ПРИМЕРНЫЕ траектории движения по качеству воздуха 2021 г. в 2030 г./после 2030 г. на основе трех оцененных вариантов политики (I-1, I-2, I-3). Эта цифра также указывает на 2020, 2030 и 2050 годы процентную долю точек отбора проб воздуха, в которых прогнозируется среднегодовой уровень концентрации РМ2,5 в соответствующих диапазонах (например, от 5 до 10 мкг/м3 или от 10 до 15 мкг/м3) при базовом сценарии и МТFR.

Рекомендации для лиц, принимающих политические решения

Поэтапный подход к установлению действующих и будущих стандартов качества воздуха в ЕС:

- (1) установить четкие стандарты качества воздуха ЕС на среднесрочную перспективу, то есть на 2030 год (с определенным числом временных исключений, если они явно оправданы);
- (2) разработать долгосрочную перспективу на период после 2030 года для полного согласования с Руководящими принципами ВОЗ по качеству воздуха 2021 г., одновременно следуя курсу по достижению концепции нулевого загрязнения к 2050 г.;
- (3) внедрить механизм регулярной проверки для обеспечения того, чтобы последние научные знания о качестве воздуха определяли будущие решения и сохраняли элементы гибкости с учетом потенциальных (будущих) геополитических проблем.



Благодарим за внимание!

Офис 15 Ул. Достык, 5 **Z05H9M1 Нур-Султан**

www.wecoop.eu info@wecoop.eu

