
Опыт Латвии и Эстонии в сфере управления качеством воздуха

This project is funded by The European Union

Содержание

- Законодательство, регулирующее моделирование качества воздуха
- Опыт применения
- Поправки к законодательству

Латвия – кто что делает (1)

- Латвийский центр среды, геологии и метеорологии (LVGMC):
 - мониторинг качества атмосферного воздуха
 - имеет программу расчета рассеивания (EnviMan) и на всей территории страны моделирует фоновые значения (платная услуга)
 - обязан предоставлять метеорологические данные, которые необходимы для расчета рассеивания (платная услуга)

Латвия – кто что делает (2)

- Региональное Управление по охране среды рассматривает заявки на получение разрешений и выдает разрешения
- Государственное бюро по надзору за средой рассматривает отчеты по ОВОС (возможно привлечение приглашенных экспертов)
- Моделирование рассеивания строго регулируется нормативными документами Кабинета Министров

Латвия – кто что делает (3)

- Операторы отвечают за разработку заявок/отчетов, в которых предложены предельно допустимые выбросы. ПДВ должны обеспечивать соответствие стандартам качества воздуха. Моделирование рассеивания загрязнения используется для контроля этого соответствия.
- На данный момент услуги моделирования рассеивания в Латвии предоставляет Латвийский центр среды, геологии и метеорологии (используя программу EnviMan) или консультанты
- ADMS и AERMOD являются программами, которые в данный момент используют консультанты

Латвия – как это работает (1)

- «Проект предельных значений выбросов» является частью заявки на получения комплексного разрешения (обычно подготавливается консультантом)
- Отчет по ОВОС включает в себя схожий раздел об оценке воздействия на качество воздуха (должен соответствовать законодательным требованиям, относящимся к разработке «Проекта предельных значений выбросов»)

Латвия – как это работает (2)

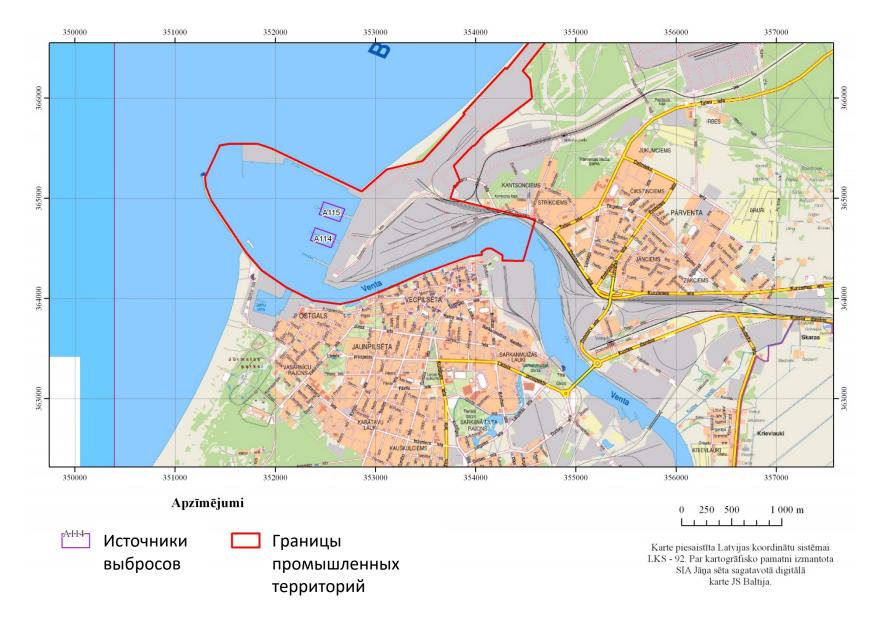
- Сравнение рассчитанных (моделированных) концентраций загрязнения за пределами рабочей зоны со стандартами качества воздуха:
 - Таблица выбросов и таблица концентраций загрязнения
 - Карты (только для значительных концентраций)
 - Краткосрочные и долгосрочные сценарии
 - Принимая во внимание фоновые концентрации, данные о которых должны быть получены по запросу в Латвийском центре среды, геологии и метеорологии, или путем моделирования
- Если стандарты превышены должен быть разработан план действий для существующих установок

Законодательство

- Правила Кабинета Министров о подготовке проекта предельно допустимых выбросов для стационарных источников загрязнения (1-я редакция 2003 г., 2-я редакция 02.04.2013.)
- Предусмотрены Законом о загрязнении
- Упомянуты в Законе об ОВОС
- Упомянуты в Правилах об оценке запаха

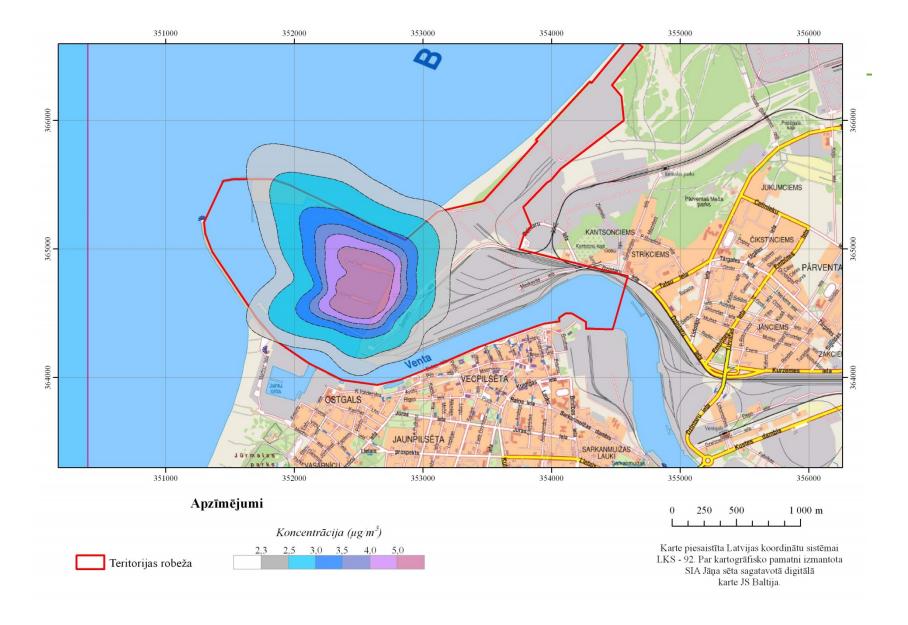
Правила – краткое содержание

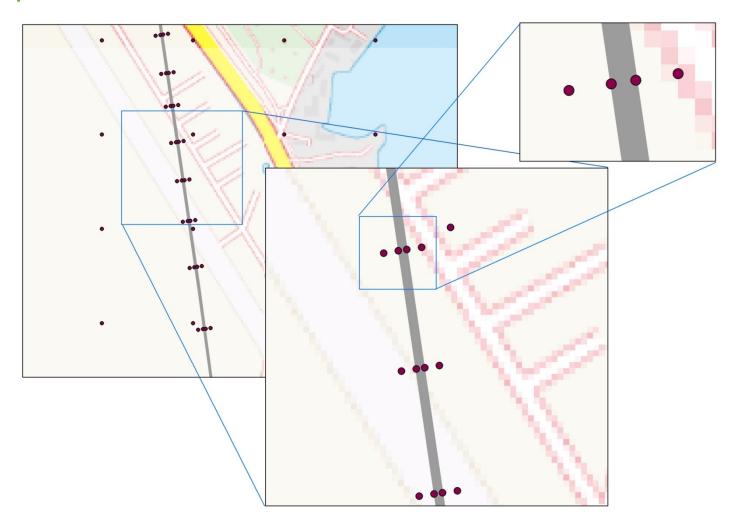
- Методы определения параметров выбросов:
 - ✓ Мониторинг, инвентаризация, расчет
- Процедура утверждения моделей, используемых для расчета:
 - ✓ Приложение со списком утвержденных моделей
- Структура отчета с результатами моделирования
- Процедура получения и использования метеорологических данных и информации о фоновых концентрациях



Территории, исключенные из оценки соответствия

- Оценка соответствия стандартам качества воздуха не производится на следующих территориях:
 - ✓ территориях, недоступных для населения, где отсутствует постоянное жилье;
 - ✓ промышленных территориях, на которые распространяются требования к качеству рабочей среды и безопасности на рабочем месте;
 - ✓ на проезжей части дорог и на разделительной полосе автострад, если к ней отсутствует доступ пешеходов.





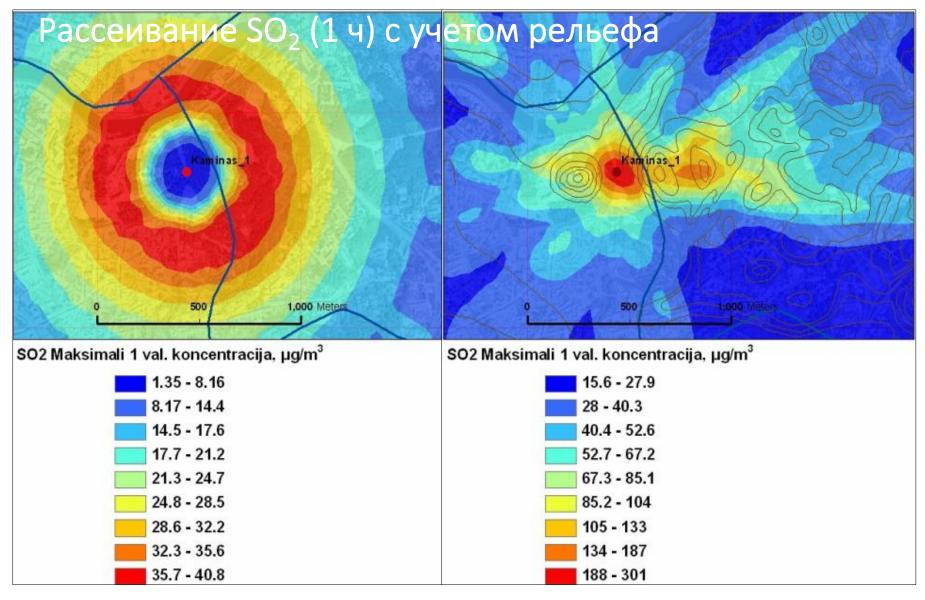
Размещение точек расчета концентраций вокруг дороги

Выбор коэффициентов выбросов

- Заключение Государственного контроля по поводу применения коэффициентов выбросов
- Приоритетный порядок использования источников информации о коэффициентах выбросов:
 - ✓ справочник EMEP/EEA (коэффициенты выбросов Уровня 3 Tier 3);
 - ✓ АР-42, Сборник коэффициентов выбросов в атмосферу загрязняющих веществ (Агентство по охране окружающей среды США);
 - ✓ Любой другой обоснованный источник.

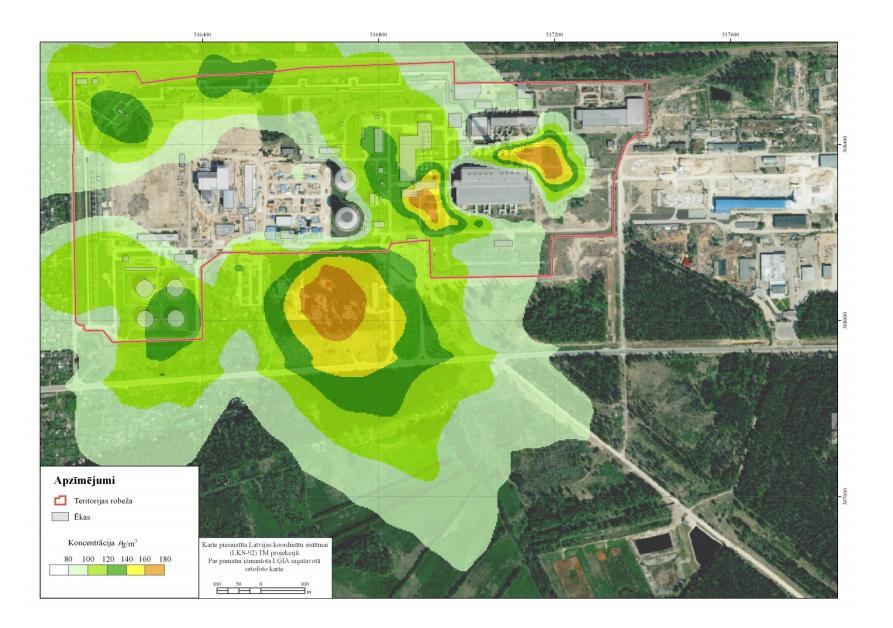
Анализ чувствительности

- Анализ чувствительности модели к:
 - ✓ метеорологическим параметрам (т.е. различные станции наблюдений, вариация по годам, характеристики поверхности),
 - ✓ параметрам выбросов (объем и динамика производства),
 - ✓ пространственному разрешению сети расчета,
 - ✓ включению в параметры расчета данных о рельефе и застройке
- Предусмотрен был и ранее, но редко применялся
- Обязателен, если фоновая концентрация превышает верхний уровень оценки (или 70% целевого значения)


Анализ чувствительности – рельеф

- Должен производиться:
 - ✓ Если поперечный уклон превышает 1:10 (крутизна склона выше чем 1 к 10),
 - ✓ Если высота элементов рельефа превышает высоту источника в два раза.

Aplinkos apsaugos agentūra / M.Bernatonis (2009)

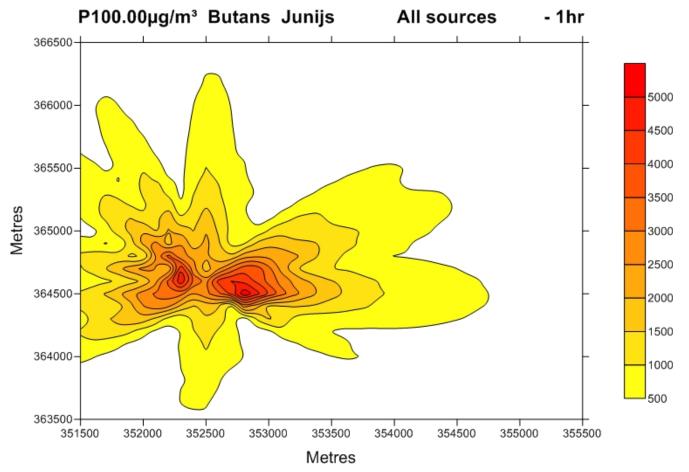


Анализ чувствительности – застройка

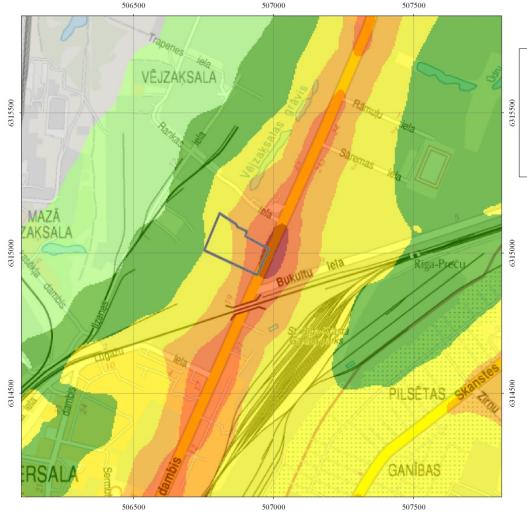
- Должен производиться:
 - ✓ Если источник выбросов находится на крыше или примыкает к стене здания,
 - ✓ Если высота зданий в непосредственной близости от источника превышает высоту источника в два или больше раз.

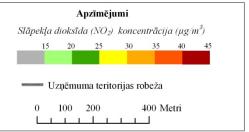

Анализ чувствительности – динамика производства

- Должен производиться:
 - ✓ Если источник действует менее чем 2400 часов в год.



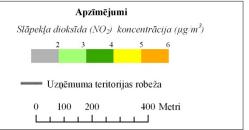
Динамика производства – летний период




Оценка воздействия существующих установок

- Определение суммарных значений концентрации (процесс + фон) и определение области максимального воздействия; доля процесса в общей концентрации
- Если суммарная концентрация превышает предельное значение в результате превышения фоновых значений, оператор и\или местное самоуправление должно подготовить план действий

Karte piesaistīta Latvijas koordinātu sistēmai (LKS-92) TM projekcijā. Kartogrāfisko datu sagatavošanā izmantoti LVGMA izsniegtie telpiskie dati par piesārņojošo vielu fona koncentrācijām. Par kartogrāfisko pamatni izmantota karšu izdevniecības "Jāṇa sēta" sagatvotā karte JS Baltija


Оценка воздействия – суммарная концентрация

Karte piesaistīta Latvijas koordinātu sistēmai (LKS- 92) TM projekcijā. Kartogrāfisko datu sagatavošanā izmantoti LVĢMA izsniegtie telpiskie dati par piesārņojošo vielu fona koncentrācijām. Par kartogrāfisko pamatni izmantota karšu izdevniecības "Jāņa sēta" sagatvotā karte JS Baltija

Оценка воздействия – вклад процесса

Оценка воздействия – вклад процесса (2)

Вещество	Максимальная концентрация (только оператор), µg/m ^{3,}	Максимальная концентрация (сумма), µg/m³	Периуд усреднения	Координаты	Доля оператора в общей концентрации, %	Суммарная концентрация относительно стандарта качества воздуха, %
PM ₁₀ (90,41. процентиль)	4,45	12,21	год/24h	x-549032 y-320370	36,45	24,42
РМ ₁₀ (среднегодовая)	1,76	9,51	год/1h	x-549032 y-320370	18,51	23,78
РМ _{2,5} (среднегодовая)	0,10	5,83	год/1h	x-549032 y-320370	1,72	23,32

Развитие законодательства Эстонии, касающееся выбросов в атмосферу

- До 1998 использовалось советское законодательство, касающееся выбросов в атмосферу
 - Список загрязняющих веществ (почти 300)
 - 4 категории
- Начиная с 1998 г. 13 приоритетных загрязняющих веществ ЕС и 77 «не приоритетных» загрязняющих веществ
 - Без категорий
- Начиная с 2004 (ЕС) 13+77 загрязняющих веществ
- Начиная 2020 13+33 загрязняющих веществ

Пример «не приоритетных» загрязняющих веществ Эстонии

3 группы:

- Неорганические вещества
- Органические вещества
- Твердые частицы

Nr	Group, po	Limit value µg/m³							
	Name	Code of	Formula ¹⁾	One hour	24 hour				
		group		limit value	average				
		substance/s		SPV ₁	SPV ₂₄				
		CAS nr1)							
1	2	3	4	5	6				
I. ANORGANIC COMPOUNDS									
Fluor ja a	Fluor ja anorgaanilised ühendid								
1.	Fluor ja gaasilised fluoriidid,	7782-41-4	F ₂	20	5				
	ümberarvutatuna fluoriks								
2.	Fluoriidid, hästilahustuvad,	16984-48-8	-F	30	10				
	ümberarvutatuna fluoriks								
312	Fosforhape (ortofosforhape)	75664-38-2	H₃PO₄	20	20				
<u> </u>	II. ORGANIC COMPOUNDS								
Akrülaadi	a	10	10						
13.	Etüülakrülaat (etüülpropenaat)	140-88-5	CH ₂ =CHCOOC ₂ H ₅						
Aldehüüd	100	50							
14.	Formaldehüüd (metanaal)	50-00-0	НСНО						
Alifaatsed süsivesinikud					2000				
15.			-						
Alkoholid									
16.	Butanoolid (butüülalkoholid)	78-92-2	CH ₃ (CH ₂) ₃ OH	200	50				
57.	Tsükloheksanoon	108-94-1	C ₆ H ₁₀ O	40	40				
58.	Tärpentiiniõli	8006-64-2	-	2000	1000				
III. SOLID PARTICLES									
59.	Asbest	12001-29-5	-	10	5				
77.	Vask ja anorgaanilised ühendid,	7440-50-8	Cu	20	2				
	ümberarvutatuna vaseks								

Законодательство Эстонии о выбросах с 2020

Выбор "не приоритетных веществ" базируется на:

- Оценке встречаемости в Эстонии национальная статистика (Статистическая служба и база данных разрешений)
- Оценке риска опасностей, связанных с выбросом загрязняющих веществ
- Наконец требуется отделять PM_{10} и $PM_{2,5}$ от PM_{sum} и пыли

Законодательство о выбросах Эстонии

- Контроль выбросов связан с платой за загрязнение
- Владельцы разрешений на выброс обязаны ежеквартально отчитываться об объеме выбросов загрязняющих веществ, указанных в разрешении и оплатить сборы в национальный экологический фонд

Законодательство о выбросах Эстонии

Плата Евро за тонну

Вещество	Плата	
SO ₂ и другие неорганические соединения серы	145,46	
СО	7,7	
Частицы, кроме тяжелых металлов и их соединений	146,16	
Оксиды азота в пересчете на NO ₂ и другие неорганические соединения азота	122,32	
Летучие органические соединения, кроме метана и меркаптанов	122,32	
Меркаптаны	31 785	
Тяжелые металлы и их соединения	1278	

Развитие системы контроля качества воздуха в Эстонии

- До сих пор, в основном, на основе правил контроля выбросов
- Другие источники (мобильные и т.д.) в соответствии с законами ЕС

Развитие системы контроля качества воздуха в Эстонии

- Исторически, с точки зрения контроля качества воздуха, Эстония разделена на 3 зоны:
 - Таллинн,
 - Кохтла-Ярве
 - Остальная территория Эстонии
- На сегодня только 2 зоны: Таллинн и остальная территория Эстонии

Заключительные соображения

- Качество оценки воздействия на качество воздуха за последние 18 лет значительно возросло
- Требуется постоянное повышение квалификации контролирующих органов
- Со временем возрастает использование дополнительных возможностей моделей
- До сих пор отсутствуют требования к оценке критических нагрузок или химических реакций в атмосфере (проводятся только в процессе ОВОС)
- До сих пор отсутствуют требования к оценке качества воздуха на разных уровнях (пока только на уровне 2 м от земли)

Благодарю за внимание!

www.wecoop2.eu

The European Union

